首页> 外文OA文献 >A novel deterministic approach for aspect-based opinion mining in tourism products reviews
【2h】

A novel deterministic approach for aspect-based opinion mining in tourism products reviews

机译:旅游产品评论中基于方面的观点挖掘的新颖确定性方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work proposes an extension of Bing Liu's aspect-based opinion mining approach in order to apply it to the tourism domain. The extension concerns with the fact that users refer differently to different kinds of products when writing reviews on the Web. Since Liu's approach is focused on physical product reviews, it could not be directly applied to the tourism domain, which presents features that are not considered by the model. Through a detailed study of on-line tourism product reviews, we found these features and then model them in our extension, proposing the use of new and more complex NLP-based rules for the tasks of subjective and sentiment classification at the aspect-level. We also entail the task of opinion visualization and summarization and propose new methods to help users digest the vast availability of opinions in an easy manner. Our work also included the development of a generic architecture for an aspect-based opinion mining tool, which we then used to create a prototype and analyze opinions from TripAdvisor in the context of the tourism industry in Los Lagos, a Chilean administrative region also known as the Lake District. Results prove that our extension is able to perform better than Liu's model in the tourism domain, improving both Accuracy and Recall for the tasks of subjective and sentiment classification. Particularly, the approach is very effective in determining the sentiment orientation of opinions, achieving an F-measure of 92% for the task. However, on average, the algorithms were only capable of extracting 35% of the explicit aspect expressions, using a non-extended approach for this task. Finally, results also showed the effectiveness of our design when applied to solving the industry's special issues in the Lake District, since almost 80% of the users that used our tool considered that our tool adds valuable information to their business.
机译:这项工作提出了刘兵基于方面的观点挖掘方法的扩展,以便将其应用于旅游领域。该扩展涉及以下事实:在Web上编写评论时,用户对不同种类的产品的引用不同。由于Liu的方法侧重于实物产品评论,因此无法直接应用于旅游领域,因为该领域具有模型未考虑的特征。通过对在线旅游产品评论的详细研究,我们发现了这些功能,然后在扩展中对其进行了建模,并提出了将新的和更复杂的基于NLP的规则用于方面级别的主观和情感分类任务的建议。我们还承担了意见可视化和摘要的任务,并提出了新的方法来帮助用户轻松地消化意见的广泛可用性。我们的工作还包括开发基于方面的观点挖掘工具的通用体系结构,然后将其用于创建原型,并在智利行政区域Los Lagos的旅游业背景下分析TripAdvisor的观点。湖畔区域。结果证明,在旅游领域,我们的扩展能够比Liu的模型表现更好,从而提高了主观和情感分类任务的准确性和召回率。特别地,该方法在确定意见的情感取向方面非常有效,可以为任务实现92%的F值。但是,平均而言,该算法只能使用35%的显式方面表达式来执行此任务,而使用非扩展方法。最后,结果还显示了我们的设计在解决湖区行业特殊问题时的有效性,因为使用我们工具的几乎80%的用户认为我们的工具为他们的业务增加了宝贵的信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号